# Computer Science > Information Theory

[Submitted on 8 Sep 2016 (v1), last revised 25 Mar 2017 (this version, v2)]

# Title:What can (partition) logic contribute to information theory?

Download PDFAbstract: Logical probability theory was developed as a quantitative measure based on Boole's logic of subsets. But information theory was developed into a mature theory by Claude Shannon with no such connection to logic. A recent development in logic changes this situation. In category theory, the notion of a subset is dual to the notion of a quotient set or partition, and recently the logic of partitions has been developed in a parallel relationship to the Boolean logic of subsets (subset logic is usually mis-specified as the special case of propositional logic). What then is the quantitative measure based on partition logic in the same sense that logical probability theory is based on subset logic? It is a measure of information that is named "logical entropy" in view of that logical basis. This paper develops the notion of logical entropy and the basic notions of the resulting logical information theory. Then an extensive comparison is made with the corresponding notions based on Shannon entropy.

## Submission history

From: David Ellerman [view email]**[v1]**Thu, 8 Sep 2016 13:36:15 UTC (64 KB)

**[v2]**Sat, 25 Mar 2017 04:35:32 UTC (72 KB)

Current browse context:

cs.IT

### References & Citations

Which authors of this paper are endorsers? |
Disable MathJax (What is MathJax?)
Browse v0.3.2.5 released 2020-07-27
Feedback?