We gratefully acknowledge support from
the Simons Foundation
and member institutions
Full-text links:

Download:

Current browse context:

cs.LG

Change to browse by:

cs

References & Citations

Bookmark

(what is this?)
CiteULike logo BibSonomy logo Mendeley logo del.icio.us logo Digg logo Reddit logo ScienceWISE logo

Computer Science > Learning

Title: Collaborative Deep Reinforcement Learning

Abstract: Besides independent learning, human learning process is highly improved by summarizing what has been learned, communicating it with peers, and subsequently fusing knowledge from different sources to assist the current learning goal. This collaborative learning procedure ensures that the knowledge is shared, continuously refined, and concluded from different perspectives to construct a more profound understanding. The idea of knowledge transfer has led to many advances in machine learning and data mining, but significant challenges remain, especially when it comes to reinforcement learning, heterogeneous model structures, and different learning tasks. Motivated by human collaborative learning, in this paper we propose a collaborative deep reinforcement learning (CDRL) framework that performs adaptive knowledge transfer among heterogeneous learning agents. Specifically, the proposed CDRL conducts a novel deep knowledge distillation method to address the heterogeneity among different learning tasks with a deep alignment network. Furthermore, we present an efficient collaborative Asynchronous Advantage Actor-Critic (cA3C) algorithm to incorporate deep knowledge distillation into the online training of agents, and demonstrate the effectiveness of the CDRL framework using extensive empirical evaluation on OpenAI gym.
Subjects: Learning (cs.LG)
Cite as: arXiv:1702.05796 [cs.LG]
  (or arXiv:1702.05796v1 [cs.LG] for this version)

Submission history

From: Kaixiang Lin Kaixiang Lin [view email]
[v1] Sun, 19 Feb 2017 21:13:45 GMT (1606kb,D)