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Largest Eigenvalue and Invertibility of Symmetric Matrix Signings

Charles Carlson Karthekeyan Chandrasekaran Hsien-Chih Chang Alexandra Kolla∗

Abstract

The spectra of signed matrices have played a fundamental role in social sciences, graph
theory and control theory. They have been key to understanding balance in social networks,
to counting perfect matchings in bipartite graphs, and to analyzing robust stability of dynamic
systems involving uncertainties. More recently, the results of Marcus et al. have shown that
an efficient algorithm to find a signing of a given adjacency matrix that minimizes the largest
eigenvalue could immediately lead to efficient construction of Ramanujan expanders.

Motivated by these applications, we investigate natural spectral properties of signed matrices
and address the computational problems of identifying signings with these spectral properties.
Our main results are: (a) NP-completeness of three problems: verifying whether a given matrix
has a signing that is positive semi-definite/singular/has bounded eigenvalues, (b) a polynomial-
time algorithm to verify whether a given matrix has a signing that is invertible, and (c) a
polynomial-time algorithm to find a minimum increase in support of a given symmetric matrix
so that it has an invertible signing. We use combinatorial and spectral techniques; our main
new tool is a combinatorial characterization of matrices with invertible signings that might be of
independent interest. We use our characterization and classic structural results from matching
theory to find a minimum increase in the support in order to obtain invertible signings.
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1 Introduction

The spectra of several graph-related matrices such as the adjacency and the Laplacian matrices have
become fundamental tools in computer science research. They have had a tremendous impact in
several areas including machine learning, data mining, web search and ranking, scientific computing,
and computer vision. In this work, we investigate the spectrum and the invertibility of signings of
matrices.

For a real symmetric n×n matrix M and a n×n matrix s taking values in {±1}—which we refer
to as a signing—we define the signed matrix M(s) to be the matrix obtained by taking entry-wise
products of M and s. We say that s is a symmetric signing if s is a symmetric matrix and an
off-diagonal signing if s takes value +1 on the diagonal. Signed adjacency matrices (respectively,
Laplacians) correspond to the case where M is an adjacency matrix (respectively, Laplacian) of
a graph. Signed adjacency matrices were introduced as early as 1953 by Harary [21], to model
social relations involving disliking, indifference, and liking. They have since been used in an array
of network applications such as finding “balanced groups” in social networks where members of
the same group like or dislike each other [21] and reaching consensus among a group of competing
or cooperative agents [6]. Studies of spectral properties of general signed matrices as well as
signed adjacency matrices have led to breakthrough advances in multiple areas such as algorithms
[2, 8, 15,16,30,34], graph theory [37,41,45,49] and control theory [10,27,35,38,42].

In this work, we study natural spectral properties of symmetric signed matrices and address
the computational problems of identifying signings with these spectral properties. The magnitude
of the eigenvalues of symmetric signed adjacency matrices and Laplacians are fundamental to de-
signing expanders [2, 8, 15,16,30] and in particular, Ramanujan expanders [34]. Motivated by this
application, we examine symmetric signed matrices with bounds on the magnitude of the eigen-
values. We next examine the singularity and the invertibility of symmetric signed matrices. Both
these properties are completely determined by the determinant. The determinant of signed matri-
ces has a special significance in the computational problems of counting matchings and computing
the permanent [37, 41, 45, 49]. In what follows, we elaborate on these significances, motivate the
related computational problems and describe our results.

Spectra of signed matrices and expander graphs. The relation between the expansion of
a graph and the second eigenvalue λ2 of the adjacency matrix of the graph has been a celebrated
fact for decades [5, 12]. The Alon-Boppana bound [36] states that λ2 ≥ 2

√
d− 1 − o(1) for every

d-regular graph. For this reason, graphs with λ2 ≤ 2
√
d− 1 are optimal expanders and are called

Ramanujan. The construction of Ramanujan graphs by Lubotzky, Philips, and Sarnak [33] was a
landmark achievement, giving d-regular graphs with the best possible expansion. However, their
construction only produced Ramanujan expanders of certain degrees. Efficient construction of
Ramanujan expanders of all degrees remains an important open problem.

A combinatorial approach to this problem, initiated by Friedman [15], is to obtain larger Ra-
manujan graphs from smaller ones while preserving the degree. The smaller starting graph is known
as the base graph while the larger graph is known as a lift. A 2-lift H of G is obtained as follows:
Introduce two copies of each vertex u of G, say u1 and u2, as the vertices of H and for each edge
{u, v} in G, introduce either {u1, v2}, {u2, v1} or {u1, v1}, {u2, v2} as edges of H. There is a simple
bijection between 2-lifts and symmetric signed adjacency matrices of G. Furthermore, the eigenval-
ues of the adjacency matrix of a 2-lift H are given by the union of the eigenvalues of the adjacency
matrix of the base graph G (also called the “old” eigenvalues) and the signed adjacency matrix of
G that corresponds to the 2-lift (the “new” eigenvalues). Marcus, Spielman, and Srivastava [34]
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showed that there is always a 2-lift of every d-regular bipartite graph whose new eigenvalues satisfy
the Ramanujan bound, which by the Alon-Boppana bound is the best possible.

An important consequence of Marcus et al.’s result [34] is that there is an iterative procedure to
obtain bipartite Ramanujan expanders of any degree d and any size: Start with a small d-regular
Ramanujan expander (for example, Kd,d), find a symmetric signing that minimizes the largest
eigenvalue of the signed adjacency matrix, and repeat. However, Marcus et al.’s result [34] is not
constructive and their work raises the question of whether there is an efficient algorithm to find
such a signing that minimizes the largest eigenvalue. Motivated by this application, we study the
following decision version of the computational problem of finding a signing that minimizes the
largest eigenvalue.

BoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigningBoundedEvalueSigning: Given a real symmetric matrix M and a real number λ, verify if there
exists an off-diagonal symmetric signing s such that the largest eigenvalue λmax(M(s)) is at most λ.

We note that Cohen [13], in a follow-up to the work of Marcus et al. [34], has shown an efficient
algorithm to find bipartite Ramanujan multi-graphs of all degrees, via the method of interlacing
family, without addressing the above-mentioned computational problem. It still remains open to
efficiently construct bipartite Ramanujan simple graphs of all degrees. If BoundedEvalueSign-

ing is solvable in polynomial time, then it immediately gives an efficient algorithm to construct
simple bipartite Ramanujan graphs of all degrees. In our first result, we shed light on the question
of finding a signing of a matrix in order to minimize the largest eigenvalue.

Theorem 1.1. BoundedEvalueSigning is NP-complete.

We remark that the hard instances generated by our proof of Theorem 1.1 are real symmetric
matrices with non-zero diagonal entries and hence, it does not completely resolve the computa-
tional complexity of the problem of finding a signing of a given adjacency matrix that minimizes its
largest eigenvalue. However, it gives some indication that the task of making the results by Marcus
et al. [34] constructive would require techniques that are very specific to graphs and graph related
matrices and cannot generalize to arbitrary matrices.

We recall that a matrix M is positive semi-definite if all its eigenvalues are non-negative. We
show Theorem 1.1 by considering the following closely related problem:

PsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigningPsdSigning: Given a real symmetric matrix M , verify if there exists a symmetric signing s such
that M(s) is positive semi-definite.

Theorem 1.2. PsdSigning is NP-complete.

Determinant of signed graphs. The determinant of signed adjacency matrices of graphs have
been crucial to the study of several fundamental questions concerning graphs and linear systems
[37, 41, 45, 49]. We mention some of these questions: Pólya’s scheme: Given an adjacency matrix
A, is there a signing of A such that the permanent of A equals the determinant of the signed
matrix? Sign solvability : Given a real square matrix, is every real matrix with the same sign
pattern (that is, the corresponding entries either have the same sign, or are both zero) invertible?
Pfaffian orientation: Given a bipartite graph, does it have a Pfaffian orientation? Even length
circuits in digraphs: Given a digraph, does it have no directed circuit of even length?

All of these questions are known to be equivalent to each other and in particular, closely related
to the problem of counting the number of perfect matchings in a given bipartite graph (see for
example, Thomas [45]).
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The motivation for the above-mentioned questions largely arose from the fact that the com-
plexity of computing the permanent of a matrix is fundamentally different from the complexity of
computing the determinant [48]. Pólya [39] suggested the possibility of computing the permanent
by somehow reducing the problem to computing the determinant of a related matrix: If A is a
0-1 square matrix, under what conditions is there a signed matrix B obtained from A such that
the permanent of A equals the determinant of B? In a seminal work, Robertson, Seymour, and
Thomas [41] gave a structural characterization of matrices that have this property (which they
called Pólya matrices) and presented a polynomial time algorithm that decides whether a given
matrix is a Pólya matrix.

In this work, we investigate questions concerning the invertibility of symmetric signed matrices.
Our next result examines the problem of verifying whether every symmetric signing of a given
matrix is invertible:

SingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigningSingularSigning: Given a real symmetric matrix M , verify if there exists an off-diagonal sym-
metric signing s such that M(s) is singular.

Theorem 1.3. SingularSigning is NP-complete.

We next consider the counterpart of SingularSigning, namely verifying whether every sym-
metric signing of a given matrix is singular:

InvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigningInvertibleSigning: Given a real symmetric matrix M , verify if there exists a symmetric signing
s such that M(s) is invertible (i.e., non-singular).

In contrast to the SingularSigning problem, we show that the InvertibleSigning problem
is solvable in polynomial time.

Theorem 1.4. There exists a polynomial time algorithm to solve InvertibleSigning.

Our algorithm for solving InvertibleSigning is based on a novel graph-theoretic characteriza-
tion of symmetric matrices M for which every symmetric signing M(s) is singular which we describe
below. We believe that this characterization might be of independent interest. The support graph
of a real symmetric n×n matrix M is an undirected graph G where the vertex set of G is {1, . . . , n},
and the edge set of G is {{u, v} | M [u, v] 6= 0}. We note that G could have self-loops depending on
the diagonal entries of M . For a subset S of vertices in graph G, let NG(S) be the non-inclusive
neighborhood of S, that is, {u ∈ V \ S | {u, v} is an edge of G for some v in S}. We recall that a
subset S of vertices is said to be independent if there are no edges between any pair of vertices in
S. Theorem 1.4 follows immediately from the following theorem.

Theorem 1.5. Let M be a symmetric n × n matrix and let G be the support graph of M . The
following are equivalent:

1. The signed matrix M(s) is singular for every symmetric signing s.

2. There is a non-empty independent set Q such that |NG(Q)| < |Q|, where none of the vertices
in Q have self-loops.

Moreover, there exists a polynomial-time algorithm to verify whether the signed matrix M(s) is
singular for every symmetric signing s.
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A subset S of vertices is said to be expanding in G if |NG(S)| ≥ |S|. Thus, Theorem 1.5 gives
a spectral characterization for the existence of a non-expanding independent set in a graph G: A
graph G contains a non-expanding independent set if and only if every symmetric signed adjacency
matrix of G is singular.

Graphs with expanding independent sets have been encountered frequently in the study of
independent sets [4, 11, 46] as well as matchings [32, 47]. A perfect 2-matching in a graph G with
edge set E is an assignment x : E → {0, 1, 2} of values to the edges such that

∑

e∈δ(v) xe = 2
holds for every vertex v in G (where δ(v) denotes the set of edges incident to v). We obtain
the polynomial-time algorithm mentioned in Theorem 1.5 as well as Theorem 1.4 using a classic
characterization by Tutte [47]. He showed that the existence of a non-expanding independent
set is equivalent to the absence of a perfect 2-matching in the graph. Tutte’s results also give a
polynomial-time algorithm to verify the existence of a perfect 2-matching in a given graph (for
example, see Lovász-Plummer [32, Corollary 6.1.5]).

Efficient algorithms for finding the solvability index of a signed matrix. The notion of
balance of a symmetric signed matrix is crucial to social sciences and has been studied extensively
[21, 23, 24, 29]. A signed adjacency matrix is balanced if there is a partition of the vertex set such
that all edges within each part are positive, and all edges in between two parts are negative (one
of the parts could be empty). A number of works [3, 20, 29, 44, 50, 51] have explored the problem
of minimally modifying signed graphs (or signed adjacency matrices) to convert it into a balanced
graph. Given a signed matrix A, the frustration index of A is the minimum number of non-zero off-
diagonal entries of A whose deletion results in a balanced signed graph [1, 22]. A simple reduction
from MaxCut shows that computing the frustration index of a signed graph is NP-hard [26].

In this paper, we introduce a related problem regarding signed matrices: Given a symmetric
n× n matrix A, what is the smallest number of non-diagonal zero entries of A whose replacement
by non-zeroes gives a symmetric matrix A′ that has an invertible symmetric signing? Our main
motivation is to study systems of linear equations in signed matrices that might be ill-defined, and
thus do not have a (unique) solution and to minimally modify such matrices so that the resulting
linear system becomes (uniquely) solvable.

For a real symmetric matrixM , the solvability index ofM is the smallest number of non-diagonal
zero entries that need to be converted to non-zeroes so that the resulting symmetric matrix has an
invertible symmetric signing. We emphasize that the support-increase operation that we consider
preserves symmetry, that is, if we replace the zero entry A[i, j] by A′[i, j] = α, then the zero entry
A[j, i] is also replaced by A′[j, i] = α. We give an efficient algorithm to find the solvability index.

Theorem 1.6. There exists a polynomial time algorithm to find the solvability index of a given
real symmetric matrix.

In order to show Theorem 1.6, we exploit the combinatorial characterization given in Theorem
1.5 and the results of Tutte mentioned above to reduce the problem of computing solvability index
to the problem of adding minimum number of edges to a given graph so that the resulting graph
contains a perfect 2-matching. We solve the resulting minimum edge addition problem using the
Gallai-Edmonds decomposition [14,17,18] and by exploiting its connection to the additive integral-
ity gap of the fractional matching linear program.

Remark. Our techniques to find the solvability index can also be used to find the largest principal
submatrix that has an invertible symmetric signing. We defer the result to the full-version of the
paper.
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Since all of our results are for symmetric signings, we will just use the term signing to refer to
a symmetric signing in the rest of the paper.

1.1 Paper Organization

The paper is organized as follows. In Section 2 we prove the NP-completeness results, namely
Theorems 1.1, 1.2, and 1.3. The proofs of Theorems 1.2 and 1.3 use similar tools, so it is convenient
to prove them together. The proof of Theorem 1.1 follows as a corollary of the NP-completeness of
a variation of the PsdSigning problem. In Section 3 we show our combinatorial characterization
of matrices with invertible signings and provide a polynomial-time algorithm to verify whether a
given matrix has an invertible signing, thereby proving Theorem 1.5. In Section 4, we use the
characterization from Section 3 and structural results from matching theory to give a polynomial-
time algorithm to compute the solvability index, and thus prove Theorem 1.6.

2 Hardness of Signing Problems

In this section we prove Theorems 1.1, 1.2, and 1.3.

We use the notion of Schur complement in our reduction. The following lemma summarizes the
definition and the relevant properties of the Schur complement.

Lemma 2.1 (Horn and Johnson [25]). Let D be a symmetric matrix whose blocks are of the
following form (with appropriate dimensions):

D =

[

A B
BT C

]

.

Suppose A is invertible. Then the Schur complement of C in matrix D is defined to be DC :=
C −BA−1BT . We have the following properties:

(i) Suppose A is positive definite. Then, D is positive semi-definite if and only if the Schur
complement of C in D, namely DC , is positive semi-definite.

(ii) det(D) = det(A) · det(DC).

In order to show the NP-completeness results, we reduce from the Partition problem, which
is a well-known NP-complete problem [28]. We recall the problem below:

PartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartitionPartition: Given an n-dimensional vector b of non-negative integers, determine if there is a ±1-
signing vector z such that the inner product 〈b, z〉 equals zero.

We have the ingredients needed to prove Theorems 1.2 and 1.3.

Proof of Theorems 1.2 and 1.3. Both PsdSigning and SingularSigning are in NP since if there
is an (off-diagonal) signing of the given matrix that is positive semi-definite or singular, then this
signing gives the witness. In particular, we can verify if a given (off-diagonal) symmetric signed
matrix is positive semi-definite or singular in polynomial time by computing its spectrum [19].

We show NP-hardness of PsdSigning and SingularSigning by reducing from Partition.
Let the n-dimensional vector b := (b1, . . . , bn)

T be the input to the Partition problem, where each

6



bi is a non-negative integer. We construct a matrixM as an instance of PsdSigning/SingularSigning
as follows: Consider the following (n + 2)× (n+ 2)-matrix

M :=





In b 1n
bT 〈b, b〉 0
1Tn 0 n



 ,

where In is the n×n identity matrix and 1n is the n-dimensional column vector of all ones. Claims
2.2 and 2.3 prove the correctness of the reduction to PsdSigning and SingularSigning.

Claim 2.2. The matrix M has a signing s such that M(s) is positive semi-definite if and only if
there is a ±1-vector z such that the inner product 〈b, z〉 is zero.

Proof. We may assume that any signed matrix M(s) that is positive semi-definite may not have
negative entries in the diagonal because a positive semi-definite matrix will not have negative entries
on its diagonal. Hence, we will only consider symmetric off-diagonal signing s of the matrix M of
the following form:

M ′ := M(s) =





In b̂ z

b̂T 〈b, b〉 0
zT 0 n



 ,

where the n-dimensional vector z takes values in {±1}n and b̂ = (b̂1, . . . , b̂n)
T , where b̂i takes value

in {±bi} for every i. Let

A := In,

B :=
[

b̂ z
]

, and

C :=

[

〈b, b〉 0
0 n

]

.

Since A = In is invertible, the Schur complement of C in M ′ is well-defined and is given by

M ′
C =

[

〈b, b〉 0
0 n

]

−
[

b̂T

zT

]

I−1
n

[

b̂ z
]

=

[

〈b, b〉 0
0 n

]

−
[

〈b̂, b̂〉 〈b̂, z〉
〈b̂, z〉 〈z, z〉

]

=

[

0 −〈b̂, z〉
−〈b̂, z〉 0

]

,

where the last equation follows because we have 〈b̂, b̂〉 = 〈b, b〉 and 〈z, z〉 = n.

We note that A = In is positive definite. Therefore, by property (1) of Lemma 2.1, the matrix
M ′ is positive semi-definite if and only if M ′

C is positive semi-definite. Therefore, M ′ is positive

semi-definite if and only if 〈b̂, z〉 = 0. Finally, we note that 〈b̂, z〉 = 0 if and only if there is a
±1-vector z′ such that 〈b, z′〉 = 0.

Claim 2.3. The matrix M has a symmetric off-diagonal signing s such that M(s) is singular if
and only if there is a vector z ∈ {±1}n such that the inner product 〈b, z〉 is zero.
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Proof. Construct the Schur complement M ′
C of C in M ′ as in Claim 2.2. Using property (2) of

Lemma 2.1, we have that

detM ′ = det(In) · det(M ′
C) = det(In) · det

([

0 −〈b̂, z〉
−〈b̂, z〉 0

])

= −〈b̂, z〉2.

Therefore, detM ′ = 0 if and only if 〈b̂, z〉 = 0. Again, we note that 〈b̂, z〉 = 0 if and only if there is
a ±1-vector z′ such that 〈b, z′〉 = 0.

To prove Theorem 1.1, we consider the following problem that is closely related to PsdSigning:

NsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigningNsdSigning: Given a real symmetric matrix M , verify if there exists a signing s such that M(s)
is negative semi-definite.

We observe that a real symmetric n × n matrix is positive semi-definite if and only if −M is
negative semi-definite. Theorem 1.2 and this observation lead to the following corollary.

Corollary 2.4. NsdSigning is NP-complete.

We next reduce NsdSigning to BoundedEvalueSigning which proves Theorem 1.1.

Proof of Theorem 1.1. BoundedEvalueSigning is in NP since if there is an off-diagonal signing
of a given matrix that has all eigenvalues bounded above by a given real number λ, then this signing
gives the witness. We can verify if all eigenvalues of a given off-diagonal symmetric signed matrix
are at most λ in polynomial time by computing the spectrum of the matrix.

We show NP-hardness of BoundedEvalueSigning by reducing from NsdSigning which is
NP-complete by Corollary 2.4. Let the real symmetric n × n matrix M be the input to the
NsdSigning problem. We construct an instance of BoundedEvalueSigning by considering
λ = 0 and the matrix M ′ obtained from M as follows (where |a| denotes the magnitude of a):

M ′[i, j] =

{

M [i, j] if i 6= j,
−
∣

∣M [i, j]
∣

∣ if i = j.

We observe that every negative semi-definite signing of M has to necessarily have negative values
on the diagonal. Hence, there is a signing s such that that M(s) is negative semi-definite if and
only if there is an off-diagonal signing t such that λmax(M

′(t)) ≤ λ = 0.

3 Matrices with Invertible Signings

In this section, we present a combinatorial characterization of matrices with an invertible signing.
We begin with some notation that we use throughout the section.

Let Sn denote the set of permutations of n elements. Then, the permutation expansion of the
determinant of a signed matrix M(s) is given by

detM(s) =
∑

σ∈Sn

sgn(σ) ·
n
∏

i=1

M(s)[i, σ(i)].

For ease of presentation, let us define Mσ(s) := sgn(σ) ·∏iM(s)[i, σ(i)] and Mσ := Mσ(J), where
J is the signing corresponding to all entries being +1.

8



A matching is a vertex-disjoint union of edges. A permutation σ in Sn corresponds to a vertex
disjoint union of directed cycles and self-loops on n vertices. Removing the orientation gives an
undirected graph which is a vertex disjoint union of cycles of length at least three, matching
edges, and self-loops. Let the collection of (undirected) edges in the cycle components, matching
components, and self-loop components in the resulting undirected graph be denoted by Cycles(σ),
Matchings(σ), and Loops(σ) respectively. We observe that sgn(σ) is the parity of the sum of the
number of matching edges and the number of even length cycles in the undirected subgraph induced
by the edges in Cycles(σ) ∪Matchings(σ). We define

MCycles(σ, s) :=





∏

{u,v}∈Cycles(σ)

M(s)[u, v]



 ,

MMatchings(σ, s) :=





∏

{u,v}∈Matchings(σ)

M(s)[u, v]2



 , and

MLoops(σ, s) :=





∏

{u,u}∈Loops(σ)

M(s)[u, u]



 .

We use the convention that a product over an empty set is equal to 1. With this notation, we have

Mσ(s) = sgn(σ) ·MCycles(σ, s) ·MMatchings(σ, s) ·MLoops(σ, s).

We now show that every signing of a symmetric matrix is singular if and only if every term in
the permutation expansion of the determinant of the matrix is zero.

Lemma 3.1. Let M be a symmetric matrix. The signed matrix M(s) is singular for every signing
s if and only if Mσ = 0 holds for every permutation σ in Sn.

Proof. The reverse implication follows immediately: If Mσ = 0 for every permutation σ in Sn, then
for every signing s, Mσ(s) = 0 for every permutation σ in Sn. Hence, every term in the permutation
expansion of the determinant of M(s) is zero for every signing s.

We now show the forward implication. By assumption, the determinant of M(s) is zero for
every signing s:

detM(s) =
∑

σ∈Sn

Mσ(s) = 0.

Assume for the sake of contradiction that there exists a permutation τ with Mτ 6= 0. Let Γ be a
minimum cardinality subset of permutations in Sn such that

(i) τ ∈ Γ and

(ii)
∑

σ∈Γ Mσ(s) = 0 for every signing s.

We observe that such a set Γ exists since Sn is a valid choice for Γ. The following claim, which we
prove later, shows that the cycles and the self-loops of all permutations in Γ coincide with that of
τ .

Claim 3.2. For every permutation σ in Γ, we have Cycles(σ) = Cycles(τ) and Loops(σ) =
Loops(τ).

9



Now we show that Lemma 3.1 follows from the claim. Let us fix a signing s and a permutation
σ in Γ. By Claim 3.2, we have Cycles(σ) = Cycles(τ) and Loops(σ) = Loops(τ). Furthermore,
Claim 3.2 also implies that the number of matching edges in σ and τ is the same and hence,
sgn(σ) = sgn(τ). So we have

Mσ(s) = sgn(σ) ·MCycles(σ, s) ·MMatchings(σ, s) ·MLoops(σ, s)

= sgn(τ) ·MCycles(τ, s) ·MMatchings(σ, s) ·MLoops(τ, s)

= Mτ (s) ·
(

MMatchings(σ, s)

MMatchings(τ, s)

)

.

Using the above expression and taking the sum of the terms Mσ(s) over all σ in Γ, we have

∑

σ∈Γ

Mσ(s) =
Mτ (s)

MMatchings(τ, s)
·
(

∑

σ∈Γ

MMatchings(σ, s)

)

.

By the choice of τ , we know that Mτ (s)/MMatchings(τ, s) is non-zero. Moreover, MMatchings(σ, s) is
a perfect square and therefore positive for all permutations σ in Γ. In particular, since τ is in Γ,
we have that Γ is non-empty and hence,

∑

σ∈Γ

MMatchings(σ, s) 6= 0.

Consequently, the sum
∑

σ∈Γ Mσ(s) is non-zero, contradicting condition (ii) in the choice of Γ.

We now prove Claim 3.2.

Proof of Claim 3.2. Let us consider an arbitrary permutation τ ′ ∈ Γ\{τ}. Assume for contradiction
that there is an edge e in the symmetric difference of Cycles(τ)∪Loops(τ) and Cycles(τ ′)∪Loops(τ ′).
Partition Γ into two subsets Γe and Γ′

e, where Γe contains any permutation σ in Γ that have edge e
in the subgraph induced by the edges in Cycles(σ)∪Loops(σ), and Γ′

e := Γ\Γ′
e. By this partitioning,

for every permutation σ′ ∈ Γ′
e, either e ∈ Matchings(σ′) or e 6∈ Cycles(σ′)∪Matchings(σ′)∪Loops(σ′)

holds. We also observe that exactly one of the permutations τ and τ ′ is in Γe while the other lies
in Γ′

e. In particular, both Γe and Γ′
e are nonempty. We will show that either Γe or Γ′

e contradicts
the minimality of Γ.

Let us consider an arbitrary signing s, and let s′ be another signing that is obtained from s by
flipping the sign only on edge e. Consider the following four sums:

Σ00 :=
∑

σ∈Γe

Mσ(s), Σ01 :=
∑

σ∈Γe

Mσ(s
′), Σ10 :=

∑

σ∈Γ′

e

Mσ(s), Σ11 :=
∑

σ∈Γ′

e

Mσ(s
′).

Now, by condition (ii) in the choice of Γ, we have that

Σ00 +Σ10 = 0, (1)

Σ01 +Σ11 = 0. (2)

For every σ in Γe, we have that Mσ(s) = −Mσ(s
′) since the edge e = {u, v} is in the subgraph

induced by the edges in Cycles(σ) ∪ Loops(σ) and hence exactly one of the two terms M(s)[u, v]
and M(s)[v, u] appears in Mσ(s). Therefore,

Σ00 = −Σ01. (3)
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For every σ′ in Γ′
e, we have that Mσ′(s) = Mσ′(s′) since we have either e ∈ Matchings(σ′) or

e 6∈ Matchings(σ′)∪Cycles(σ′)∪Loops(σ′) holds and in both cases, an even number of terms among
M(s)[u, v] and M(s)[v, u] appear in Mσ′(s). Therefore,

Σ10 = Σ11. (4)

By equations (1), (2), (3), and (4), we have that Σ00 = Σ01 = Σ10 = Σ11 = 0 for every signing s.

Now, take T to be the set in {Γe,Γ
′
e} that contains τ , we obtain that (i) τ ∈ T and (ii)

∑

σ∈T Mσ(s) = 0 for every signing s. Moreover |T | < |Γ|, contradicting the minimality of Γ.

As mentioned in the introduction, we use a classic result by Tutte [47] to prove Theorem 1.5.
In fact, we use the following slight generalization of Tutte’s result to graphs with self-loops.

Theorem 3.3 (Tutte [47], also see Lovász and Plummer [32]). A graph G (possibly with self-loops)
has no perfect 2-matching if and only if G has a non-empty independent set Q with |N(Q)| < |Q|
where none of the vertices in Q have self-loops. Moreover, there is a polynomial-time algorithm to
verify if a given graph has a perfect 2-matching.

For the sake of completeness, we present a proof of Theorem 3.3 in the appendix (see §A). We
now prove Theorem 1.5.

Proof of Theorem 1.5. By Lemma 3.1, the signed matrix M(s) is singular for every signing s if and
only if Mσ = 0 holds for every permutation σ in Sn. The existence of a perfect 2-matching in the
support graph of M is equivalent to the fact that Mσ 6= 0 for some σ in Sn, and therefore we have
that Mσ = 0 for every σ in Sn if and only if the support graph of M has no perfect 2-matchings. By
Theorem 3.3, a graph G has no perfect 2-matching if and only if G has a non-empty independent
set Q with |N(Q)| < |Q| where none of the vertices in Q have self-loops.

The polynomial-time algorithm given in Theorem 3.3 immediately gives us a polynomial-time
algorithm to verify whether the signed matrix M(s) is singular for every signing s.

4 Minimum Support Increase to Obtain an Invertible Signing

In this section, we study the problem of computing the solvability index of real symmetric matrices,
thus proving Theorem 1.6. We recall the following definition: For a real symmetric matrix M , the
solvability index of M is the smallest number of non-diagonal zero entries that need to be converted
to non-zeroes so that the resulting symmetric matrix has an invertible signing. (Be reminded that
the support-increase operation preserves symmetry.)

By our characterization in Theorem 1.5 and the results of Tutte summarized in Theorem 3.3,
computing the solvability index of a matrix reduces to the following edge addition problem:.

EdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAddEdgeAdd: Given a graph G (possibly with self-loops) with vertex set V and edge set E, find

min

{

|F |
∣

∣

∣

∣

F is a set of non-edges of G such that G+ F has a perfect 2-matching

}

.

In the above, G+ F denotes the graph obtained by adding the edges in F to G. In the rest of the
section, we will show that EdgeAdd can be solved efficiently, which will imply Theorem 1.6.

Theorem 4.1. There is a polynomial time algorithm to solve EdgeAdd.
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Preliminaries. We need some terminology from matching theory. Let G be a graph on vertex
set V and edge set E. For a subset S of vertices, denote the induced subgraph of G on S as G[S]
and the non-inclusive neighborhood of S in G by NG(S). We recall that a matching M in G is
a subset of edges where each vertex is incident to at most one edge in M . Let ν(G) denote the
cardinality of a maximum matching in G and let

νf (G) := max







∑

e∈E

xe

∣

∣

∣

∣

∣

∑

e∈δ(v)

xe ≤ 1, and xe ≥ 0 for all e ∈ E







denote the value of a maximum fractional matching in G. For a matching M , we define a vertex u
to be M -exposed if none of the edges of M are incident to u, and a vertex v to be an M -neighbor
of u if edge {u, v} is in M . A vertex u in V is said to be inessential if there exists a maximum
cardinality matching M in G such that u is M -exposed, and is said to be essential otherwise. A
graph H is factor-critical if there exists a perfect matching in H − v for every vertex v in H.
The following result is an immediate consequence of the odd-ear decomposition characterization of
Lovász [31].

Lemma 4.2 (Lovász [31]). If G is a factor-critical graph, then G has a perfect 2-matching.

The Gallai-Edmonds decomposition [14, 17, 18] of a graph G is a partition of the vertex set of
G into three sets (B,C,D), where B is the set of inessential vertices, C := NG(B), and D :=
V \ (B ∪C). Let B1 denote the set of isolated vertices in G[B] and B≥3 := B \B1. For notational
convenience, we will denote the Gallai-Edmonds decomposition as (B = (B1, B≥3), C,D). The
Gallai-Edmonds decomposition of a graph is unique and can be found efficiently [14]. The following
theorem summarizes the properties of the Gallai-Edmonds decomposition that we will be using
(properties (i) and (ii) are well-known and can be found in Schrijver [43] while property (iii) follows
from results due to Balas [7] and Pulleyblank [40]—see Bock et al. [9] for a proof of property (iii)):

Theorem 4.3. Let (B = (B1, B≥3), C,D) be the Gallai-Edmonds decomposition of a graph G. We
have the following properties:

(i) Each connected component in G[B] is factor-critical.

(ii) Every maximum matching M in G contains a perfect matching in G[D] and matches each
vertex in C to distinct components in G[B].

(iii) Let M be a maximum matching that matches the largest number of B1 vertices. Then there
are 2(νf (G)− ν(G)) M -exposed vertices in B≥3.

Observe that G contains a perfect 2-matching if and only if νf (G) = |V |/2. Therefore, adding
edges to get a perfect 2-matching in G is equivalent to adding edges to increase the maximum
fractional matching value to |V |/2.

Proof of Theorem 4.1. We will assume that G has no isolated vertices and no self-loops in the rest
of the proof. We make this assumption here in order to illustrate the main idea underlying the
algorithm. This assumption can be relaxed by a case analysis in the algorithm as well as the proof
of correctness. We defer the details of the case analysis to the full-version of the paper.

We use algorithm EdgeAdd(G) given in Figure 4.1. We briefly describe an efficient implemen-
tion for Step 2, since it is easy to see that other steps can be implemented efficiently. In order to find
a maximum matching that matches the largest number of B1 vertices (as mentioned in property
(iii) of Theorem 4.3), we first find the Gallai-Edmonds decomposition and a maximum matching

12



EdgeAdd(G): Input : A graph G with no isolated vertices and no self-loops.
1. Find the Gallai-Edmonds decomposition (B = (B1, B≥3), C,D) of G.
2. Find a maximum matching M that matches the largest number of B1 vertices.
3. Let S := {u ∈ B1 | u is M -exposed}.
4. If |S| is even:

Pick an arbitrary pairing of the vertices in S.
5. If |S| is odd:

Consider a vertex s in S, pick a vertex t in NG(s) and let u be the M -neighbor of t.
Pair up u with s and pick an arbitrary pairing of the vertices in S \ {s}.

6. Return the set of pairs F .

Figure 4.1: The algorithm EdgeAdd(G).

M . Then, we repeatedly augment M by searching for M -alternating paths (of even-length) from
M -exposed B1 vertices. This approach can be implemented to run in polynomial time. Alterna-
tively, Step 2 can also be implemented by solving a maximum weight matching with suitably chosen
weights.

We now argue the correctness of the algorithm. We first show that if |S| is odd, then there is
a choice of vertices t and u as described in the algorithm EdgeAdd(G): this is because, G has
no isolated vertices and hence there exists a vertex t in NG(s). Moreover, by Theorem 4.3, since
s is in B1, it follows that t is in C and thus t is matched by M to a node u in B. Now, Claim
4.4 proves feasibility and bounds the size of the returned solution F while Claim 4.5 proves the
optimality.

Claim 4.4. The algorithm EdgeAdd(G) returns a set F of non-edges of G such that (1) G + F
contains a perfect 2-matching, and (2) |F | =

⌈

|V |/2 − νf (G)
⌉

.

Proof. By property (ii) of Theorem 4.3, the set F is a set of non-edges of G. We will construct a
perfect 2-matching in G+F . By property (i) of Theorem 4.3, every component in G[B≥3] is factor-
critical. By Lemma 4.2, every component K in G[B≥3] contains a perfect 2-matching xK . Let NK

denote the support of xK . Let K denote the components in G[B≥3] that contain an M -exposed
vertex. We have two cases:

Case 1: Suppose |S| is even. Let N denote the set of edges of M that do not match any
vertices in

⋃

K∈K V (K). Now, the set of edges induced by
(
⋃

K∈KNK

)

∪N ∪F has a perfect
2-matching. A perfect 2-matching x in G+F can be obtained by assigning x(e) := xK(e) for
edges e in

⋃

K∈KNK , x(e) := 2 for edges e in N ∪ F , and x(e) := 0 for the remaining edges
in G+ F .

Case 2: Suppose |S| is odd. Let N denote the set of edges of M \ {{t, u}} that do not match
any vertices in

⋃

K∈K V (K). Now,
(
⋃

K∈KNK

)

∪N ∪ (F \ {s, u}) ∪ {{t, u}, {s, t}, {s, u}} has
a perfect 2-matching. We note that the edges {t, u}, {s, t} were already present in the graph
owing to the choice of c and u while the edge {s, u} was added as an edge from F . A perfect
2-matching x in G + F can be obtained by assigning x(e) := xK(e) for edges e ∈ ⋃K∈KNK ,
x(e) := 1 for edges e in {{t, u}, {s, t}, {s, u}}, x(e) := 2 for edges e in N ∪ (F \ {s, u}), and
x(e) := 0 for the remaining edges in G+ F .

Next we find the size of the set F returned by the algorithm. We observe that |F | =
⌈

|S|/2
⌉

. It
remains to bound |S|. For this, we count the number of vertices in the graph using the matched
and exposed vertices. We have that |V | = 2|M | + |S| + {number of M -exposed vertices in B≥3}.
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By property (iii) of Theorem 4.3 and the choice of the matching M , we have |V | = 2|M | + |S| +
2(νf (G) − ν(G)). Since M is a maximum cardinality matching, we know that |M | = ν(G) and
hence, |S| = |V | − 2νf (G).

Our next claim shows a lower bound on the optimal solution that matches the upper bound
and hence proves the optimality of the returned solution.

Claim 4.5. Let F ′ be a set of non-edges of G. Suppose G + F ′ has a perfect 2-matching. Then
|F ′| ≥

⌈

|V |/2− νf (G)
⌉

.

Proof. We first note that the addition of a non-edge can increase the value of the maximum frac-
tional matching by at most one. That is, for every graph H and every non-edge e of H, we have
νf (H + e)− νf (H) ≤ 1 (this can be shown by considering the dual problem, namely the minimum
fractional vertex cover). Now, consider an arbitrary ordering of the edges in the solution F ′ and
let F ′

i denote the set of first i edges according to this order and let F ′
0 = ∅. Then,

νf (G+ F ′)− νf (G) =

|F ′|
∑

i=1

(νf (G+ Fi)− νf (G+ Fi−1)) ≤ |F ′|.

Thus, we have |F ′| ≥ νf (G + F ′) − νf (G). We observe that if G + F ′ has a perfect 2-matching,
then νf (G + F ′) = |V |/2. Hence, |F ′| ≥ |V |/2 − νf (G). Finally, we observe that |F ′| has to be an
integer and hence, |F ′| ≥

⌈

|V |/2− νf (G)
⌉

.
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Théorie des Graphes 215–217, 1978.

[21] F. Harary. On the notion of balance of a signed graph. Michigan Math. J. 2(2):143–146, 1953.

[22] F. Harary. On the measurement of structural balance. Behavioral Science 4(4):316–323, 1959.

[23] F. Harary and J. Kabell. A simple algorithm to detect balance in signed graphs. Mathematical
Social Sciences 1(1):131–136, 1980.

[24] F. Heider. Attitudes and cognitive organization. J. Psych. 21:107–112, 1946.

[25] R. Horn and C. Johnson. Matrix Analysis, 2nd edition. Cambridge University Press, 2012.
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A Appendix

Proof of Theorem 3.3. Let G be a graph (possibly with self-loops) on n vertices. Consider a bipar-
tite graph H with two parts L and R constructed as follows. For every vertex v of G we create
vertices vL ∈ L and vR ∈ R in H. Moreover, for every edge {v, u} of G we create edges {vL, uR}
and {uL, vR} in H and for every self-loop edge {v, v} of G we create edge {vL, vR}.
Claim A.1. G has a perfect 2-matching if and only if H has a perfect matching.

Proof. Let E be the set of edges in G and x : E → {0, 1, 2} be a perfect 2-matching in G. Then
consider the support M of x. The graph G[M ] is a spanning subgraph of G where every connected
component is either a cycle, an edge, or a self-loop. We fix an orientation D of the edges of G[M ]
such that each cycle component is strongly connected. Consider the set

M ′ := {{uL, vR} | (u, v) ∈ D}.

Then M ′ is a subset of edges in H. Since D is a vertex-disjoint union of directed cycles, directed
edges, and self-loops, M ′ is a perfect matching in H.

Likewise, if the edges M ′ in H is a perfect matching in H, then we consider the function

x′({u, v}) :=







2 if both {uL, vR} and {uL, vR} are in M ,
1 if exactly one of {uL, vR} and {uL, vR} is in M ,
0 otherwise

which is a perfect 2-matching in G.

By the equivalence in Claim A.1 we can now determine if a graph has a perfect 2-matching by
constructing the bipartite graph H as above and searching for a perfect matching in H can be done
in polynomial time.

Suppose G has a perfect 2-matching. It follows from Claim A.1 that H must have a perfect
matching. Hence, by Hall’s theorem, every subset of vertices of H must be expanding in H. This
implies that any subset Q of vertices in G must be expanding in G, including independent sets
without self-loops.

Suppose that G has no perfect 2-matching. Then H has no perfect matching. By Hall’s theorem
there must be a non-expanding subset S′ ⊆ L. Let S := {u | uL ∈ S′}. Since S′ is not expanding
in H, we have that S is not expanding in G. We will show that S must be an independent set in
G without self-loops. Suppose to the contrary that S is either not an independent set or contains
self-loops. Let Q be the largest independent set in S without self-loops. Let Q′ := {uR | u ∈ Q}
and Q′ := {uR | u ∈ S \Q}. It follows that Q′ ∩Q′ = ∅ by construction. We observe every vertex
in S that is not in Q must have a neighbor in Q or must have a self-loop. Hence, Q′ ∪Q′ ⊆ NH(S′)
holds. However,

∣

∣Q′ ∪Q′
∣

∣ = |S| = |S′|. Thus, |S′| ≤ |NH(S′)| and S′ must be expanding in H, a
contradiction to the choice of S′.
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