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Abstract

In contrastwith goal-oriented dialogue, social dialogue has no clear

measure of task success. Consequently, evaluation of these systems

is notoriously hard. In this paper, we review current evaluation

methods, focusing on automatic metrics. We conclude that turn-

based metrics often ignore the context and do not account for the

fact that several replies are valid, while end-of-dialogue rewards

are mainly hand-crafted. Both lack grounding in human percep-

tions.
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1 Introduction

Non-task-oriented, social dialogue systems, aka “chatbots", receive

an increasing amount of attention as they are designed to estab-

lish a rapport with the user or customer, providing engaging and

coherent dialogue. Traditional dialogue systems [8, 10] tend to be

task-orientated for a limited domain and evaluation methods of

such systems have been much researched (see [1] for an overview).

Evaluation of social dialogue systems, on the other hand, is chal-

lenging as there is no clear measure for task success and evaluating

whether such a rapport has been established is far from clear-cut.

One common method for evaluating such systems is human eval-

uation where subjects are recruited to interact with and rate dif-

ferent systems. However, human evaluation is highly subjective,

time-consuming, expensive and requires careful design of the ex-

perimental set-up.
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Table 1: Valid system response with low word overlap to ref-

erence.

User utterance:

Have you read Murakami’s new novel?

Reference response:

No I don’t think I have read Murakami’s new

novel, what is it about?

System output:

Yes, it wasn’t my favourite but I still liked it.

2 Automatic Metrics

Automatic evaluation is popular because it is cost-effective and

faster to run than human evaluation, and is needed for automatic

benchmarking and tuning of algorithms. Here, we discuss exist-

ing automatic methods for developing social systems in terms of

word-overlap metrics, machine learning-based estimation models

and reward-based metrics. Since social systems lack a final success

measure, many of the discussed metrics operate at turn-level.

2.1 Word-Overlap Metrics

Word-overlap metrics, such as BLEU [9] and ROUGE [4], are bor-

rowed from Machine Translation (MT) and Summarisation and

have been widely been used to evaluate neural dialogue system

output, as reported in, for example [3, 11]. However, these metrics

have not been shown to correlate well with human judgements

in a dialogue setting [5]. One possible explanation is that there is

no “gold standard" to compare with, as in MT: there may be many

valid responses to an utterance that have no or few overlapping

n-grams and would thus receive low BLEU or ROUGE scores, see

example in Table 1. Measures from information theory such as per-

plexity have also been used for evaluation, e.g. comparing neural

models to n-grams [12], however perplexity can be difficult to in-

terpret. There is, therefore, a need for an evaluation method that

does not measure success by comparing an utterance to human-

generated responses but instead considers the utterance itself and

its appropriateness within its context.

2.2 Machine Learning Methods for Dialogue Evaluation

Recently, Machine Learning (ML) based evaluation has gained pop-

ularity. This method operates on the turn-level and aims to pro-

vide an estimation model of a “good" response. The advantages of

this method is that it has been shown to come closer to human-

generated responses [6] than BLEU and ROUGE. However, such

methods require retraining for each domain.
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Discriminative Models: These models attempt to distinguish

the “right" from the “wrong" answer. Next-Utterance Classification

(NUC) [7] can be evaluated by measuring the system’s ability to

select the next answer from a list of possible answers sampled

from elsewhere in the corpus, using retrieval metrics such as re-

call. NUC offers several advantages: performance is easy to com-

pute automatically and the task is interpretable and can be easily

compared to human performance. However, similar issues to word-

based metrics do apply in that there is not necessarily one single

correct answer.

More recently, adversarial evaluation measures have been pro-

posed to distinguish a dialogue model’s output from that of a hu-

man. For example, the model proposed by [2] achieves a 62.5%

success rate using a Recurrent Neural Networks (RNN) trained on

email replies.

Classification Models: [6] propose to predict human scores

from a large dataset of human ratings of Twitter responses. The

proposed models learn distributed representations of the context,

reference response and the system’s response using a hierarchical

RNN encoder. The learned model correlates with human scores at

the turn level and also generalises to unseen data. However, it does

tend to have a bias towards generic responses.

2.3 Reward-based Metrics

Reinforcement Learning (RL) based models have been applied to

task-based systems [10] to optimise interaction for some reward.

For social systems, this has also been investigated as a means to

avoid generic responses, such as “I don’t know". Here, the evalua-

tion function is implemented as the reward. We will discuss these

types of reward at turn-level and at system-level.

Turn-level rewards: [3] propose ametric involving aweighted

sum of three measures:

• Coherence: semantic similarity between consecutive turns,

• Information flow: semantic dissimilarity between utterances of

the same speaker,

• Ease of answering: negative log-likelihood of responding to an

utterance with a dull response (as defined by a blacklist).

In their experiments, they find the RL approach outperforms their

other systems in terms of dialogue length, diversity of answers and

overall quality of multi-turn dialogues. This suggests that the pro-

posed reward function successfully captures the relationship be-

tween an utterance and a response at least partially, which can

be useful in evaluating potential responses without the need for

human-generated references. However, while coherence at the turn-

level is a key factor in quality estimation, it does not necessarily

reflect the overall quality of the dialogue.

System-level rewards: The reward function by [3] was based

on heuristics, whereas [13] use a Wizard-of-Oz experiment to mea-

sure engagement and deduct a reward function with the following

metrics:

• Conversational depth: the number of consecutive turns belong-

ing to the same topic,

• Lexical diversity/information gain: the number of unique words

that are introduced into the conversation from both the system

and the user,

• Overall dialogue length.

3 Conclusion and Discussion

It is clear that there is still work to be done with respect to es-

tablishing an effective evaluation method that can capture all as-

pects of dialogue from naturalness and coherence to long-term en-

gagement and flow. Word-based metrics such as BLEU, ignore the

fact there may be any number of equally valid and appropriate

responses, while turn-based metrics do not account for the over-

use of generic responses, and system-level rewards are based on

heuristics. In future work, we will utilise data we gathered as part

of the Amazon Alexa Prize challenge to build a data-driven model

to predict customer ratings.
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